Calculation policy: Guidance

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on-using cubes. Regrouping to make 10 using ten	Adding three single digits. Use of base 10 to combine two numbers.	Column method- regrouping. Using place value counters (up to 3 digits).	Column method- regrouping. (up to 4 digits)	Column method- regrouping. Use of place value counters for adding decimals.	Column method- regrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.

				-	-	
	Recognising and	Arrays-	Arrays	Column	Column	Column
tion	making equal	showing		multiplication-	multiplicati	multiplicati
	groups.	commutative	2d ×1dusing base	introduced with	on	on
	Doubling	multiplication	10	place value	Abstract only but	Abstract methods
<u>13</u>	Doubling			Counters.	might need a	(multi-digit up to
d	Counting in			(2 and 3 digit	repeat of year 4	4 digits by a 2
nt	multiples Use			multiplied by 1digit)	first(up to 4 digit	algit number)
Ē	other objects in the				multiplied by 1or 2	
	classroom				digits)	
	Sharing objects	Division	Division with a	Division with	Short division	Short division
	into arouns	as	remainder-using	a remainder		SHORUMISION
		grouping	lollipop sticks,		(up to 4 diaits by	Lona division with
	Division as grouping	5 1 5	times tables	Short division (up to 3	a 1digit number	place value
	e.g. I have 12 sweets	Division within	facts and	digits by 1digit-	including	counters (up to 4
N	and put them in	arrays- linking	repeated	concrete and	remainders)	digits by a 2 digit
sic	groups of 3, how	to multiplication	subtraction.	pictorial)		number)
Ž	many groups?	multiplication	2d divided by 1d			Childron should
Ω	Use cubes and	Repeated	using base 10			exchange into the
	draw round 3	subtracti	or place value			tenths and
	cubes at a time.	on	counters			hundredths
						column too

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8– 5, the difference is Children to explore why 9- 6 = 8 – 5 = 7 – 4 have the same difference.
Making 10 using ten frames. 14-5 -4 $-1-4$ $-1-4$ -5	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. 14 - 5 = 9 4 14 - 4 = 10 10 - 1 = 9
Column method using base 10. 48-7 10s 1s 10s 1s 48-7 4 1	Children to represent the base 10 pictorially.	Column method or children could count back 7. 4 8 - 7 4 1

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3 ×4 4 +4 +4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 ×4 =12 4 +4 +4 =12
Number lines to show repeated groups- 3 ×4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four.
	1000010000100001 0 4 8 12	3 ×4 = 12
Cuisenaire rods can be used too.		

Use arrays to illustrate commutativity counters and other objects can also be used.	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g.	
$2 \times 5 = 5 \times 2$ $2 \log 5 = 5 \log 5$ $2 \log 5 = 5 \log 5$		$10=2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10=5+5	
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 ×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $4 \times \frac{15}{2}$	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$10 \times 4 = 40$ $5 \times 4 = 20$ $40 + 20 = 60$ A number line can also be used $10 \times 4 = 40$ $5 \times 4 = 20$ $40 + 20 = 60$	
Formal column method with place value counters (base 10 can also be used.) 3 ×23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $/$ $3 \times 3 = 9$ 20 3 $60 + 9 = 69$	
	00 000	23 <u>× 3</u> <u>69</u>	

Formal column method with place value counters 6 x 23	s. Children to represent the e.g. the image below.	he counters/base 10, pictorially	Formal written method $6 \times 23 =$ 23 $\frac{\times 6}{138}$ 1 1	
When children start to multiply 3d ×3d and 4d ×2d To get 744 children have solved 6 ×124. To get 2480 they have solved 20 ×124.	ed etc., they should be confident with	childron to colvo f	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
23 23 23 23 23 23 23 23 ? ?	i had to swim 23 lengths, 6 times veek. w many lengths did she swim in e week? th the counters, prove that 6 x 23 38	Find the product of 6 and 23 $6 \times 23 =$ $= 6 \times 23$ $6 \times 23 \times 23$ $\times 23 \times 6$ $= -6 \times 23$	What is the calculation? What is the product?	1s 000 000 000 000 000

Calculation policy: Division

Key language: share, group, divide, divided by, half.

2d ÷ 1dwith remainders using lollipop sticks. Cuisenaire	Children to represent the lollipop sticks pictorially.	13÷4 – 3 remainder 1
13÷4		Children should be encouraged to use their
Use of lollipop sticks to form wholes- squares are made because we are dividing by 4.		times table facts; they could also represent repeated addition on a number line.
		'3 groups of 4, with 1left over'
	There are 3 whole squares, with 1 left over.	
There are 3 whole squares, with 1left over.		
Sharing using place value counters.	Children to represent the place value counters	Children to be able to make sense of the
$42 \div 3 = 14$	pictorially.	place value counters and write calculations to show the process.
	QQQQ	12 - 2
10s 1s 10s 1s	10s 1s	42÷3 42=30+12
		$30 \div 3 = 10$ $12 \div 3 = 4$
	0 0000	$12 \cdot 3 = 4$ 10 + 4 = 14
	0 0000	
10s 1s 10s 1s	0 0000	
	0 0000	
	0 1000	

can you divide 615 by 5 without using short division?

between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

5 615

 $615 \div 5 =$

[]=615÷5

What is the answer?

